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Abstract
In this paper, we construct an analytical separation (diagonalization) of the full
(minimal coupling) Dirac equation into particle and antiparticle components.
The diagonalization is analytic in that it is achieved without transforming the
wavefunctions, as is done by the Foldy–Wouthuysen method, and reveals the
nonlocal time behaviour of the particle–antiparticle relationship. We then show
explicitly that the Pauli equation is not completely valid for the study of the
Dirac hydrogen atom problem in s-states (hyperfine splitting). We conclude that
there are some open mathematical problems with any attempt to explicitly show
that the Dirac equation is insufficient to explain the full hydrogen spectrum.
If the perturbation method can be justified, our analysis suggests that the use
of cut-offs in QED is already justified by the eigenvalue analysis that supports
it. Using a new method, we are able to effect separation of variables for
full coupling, solve the radial equation and provide graphs of the probability
density function for the 2p- and 2s-states, and compare them with those of the
Dirac–Coulomb case.

PACS numbers: 03.65.Pm, 12.20.−m

1. Introduction

It is generally agreed that quantum electrodynamics (QED) is an almost perfect theory that is
in excellent agreement with experiments. The fact that it is very successful is without doubt.
However, there are still some technical and foundational issues which require clarification.

Historically, when Lamb and Retherford [1] confirmed suspicions that the 2s1/2 state
hydrogen was shifted above the 2p1/2 state, the Pauli approximation to the Dirac equation was
used to (essentially) decide that the Dirac equation was not sufficient.
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2. Purpose

In light of the tremendous success (historically) of eigenvalue analysis in physics and
engineering, it is not inappropriate for us to reinvestigate the foundations of spin 1/2 particles
with an eye towards clearly identifying the physical and mathematical limitations to our
understanding of the hydrogen spectrum as an eigenvalue problem. In particular, we want
to investigate the extent that we may believe conclusions about the Dirac equation, based on
analysis of the Pauli approximation.

The first successful attempt to resolve the question of how best to handle the square-root
equation,

ih̄∂�/∂t = β
[√

c2p2 + m2c4
]
�, β =

[
I2 0
0 −I2

]
, (1)

was made by Dirac [2] in 1928. Dirac noted that the Pauli matrices could be used to write
c2p2 + m2c4 as [cα · p + mc2β]2. The matrix α is defined by α = (α1, α2, α3), where

αi =
(

0 σi

σi 0

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Thus, Dirac showed that an alternative representation of equation (1) could be taken as

ih̄∂�/∂t = [
cα · p + mc2β

]
�. (2)

In this case, � must be viewed as a vector-valued function or spinor. To be more precise,
� ∈ L2(R3, C4) = L2(R3) ⊗ C4 is a four-component column vector � = (ψ1, ψ2, ϕ1, ϕ2)

t .
In this approach, ψ = (ψ1, ψ2)

t represents the particle (positive energy) component and
ϕ = (ϕ1, ϕ2)

t represents the antiparticle (negative energy) component of the theory (for
details, see [3]).

A fair understanding of the Dirac equation can only be claimed in recent times and, as
pointed out by D Finkelstein, ‘Dirac introduced a Lorentz-invariant Clifford algebra into the
complex algebra of observables of the electron’. (See, in particular, [4–6].)

Despite successes, both practical and theoretical, there still remain a number of conceptual,
interpretational and technical misunderstandings about this equation. It is generally believed
that it is not possible to separate the particle and antiparticle components directly without
approximations (when interactions are present). The various approximations found in the
literature might have led to this belief. In addition, the historically important algebraic
approaches of Foldy–Wouthuysen [7], Pauli [8] and Feynman and Gell-Mann [9] have no
doubt further supported such ideas.

We show in section 3 that it is possible to directly separate the particle and antiparticle
components of the Dirac equation without approximations, even when scalar and vector
potentials of quite general character are present. In section 4, we show that the square-root
operator cannot be considered physically equivalent to the Dirac operator. In addition, we
offer another interpretation of the zitterbewegung and the fact that the expected value of a
velocity measurement of a Dirac particle at any instant of time is ±c. In section 5, we
reconsider the hydrogen atom problem from an exact point of view and then discuss the extent
that we may believe in the validity of the use of perturbation analysis to compute the hyperfine
splitting separation. Finally, in section 6 we show, using a combination of methods developed
by Harish-Chandra and Villalba, that it is possible to effect a separation of variables for the
hydrogen atom problem with the magnetic dipole vector potential. This allows us to provide
some justification for perturbation analysis (to compute the hyperfine splitting) in this case.
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3. Complete separation

It turns out that a direct analytic separation is actually quite simple and provides additional
insight into the particle and antiparticle components. In order to see this, let A(x, t) and V (x)

be given vector and scalar potentials and, after adding V (x) and making the transformation
p → π = p − (e/c)A, write (2) in two-component form as

ih̄
∂ψ

∂t
= (V + mc2)ψ + c(σ · π)ϕ, (3a)

ih̄
∂ϕ

∂t
= (V − mc2)ϕ + c(σ · π)ψ. (3b)

Equation (3b) can be written in the form[
∂

∂t
+ iB

]
ϕ = Dψ, (4)

with B = [(V − mc2)/h̄] and D = [c(σ · π)/ih̄]. From an analytical point of view, we see
that equation (4) is an inhomogeneous partial differential equation. This equation can be
solved via the Green’s function method. Thus, we then must solve[

∂

∂t
+ iB

]
u(t) = δ(t). (5)

It is easy to see that the solution to equation (5) is

u(t) = θ(t) exp{−iBt}, θ(t) =
{

1, t > 0
0, t < 0

, (6)

so that (f ∗ g is the convolution of f and g)

ϕ(t) = cu(t) ∗ [(σ · π)/ih̄]ψ(t) =
∫ ∞

−∞
cθ(t − τ) exp{−iB(t − τ)}[(σ · π)/ih̄]ψ(τ) dτ ,

(7a)

ϕ(t) =
∫ t

−∞
c exp{−iB(t − τ)}[(σ · π)/ih̄]ψ(τ) dτ , (7b)

where ∗ means convolution. Using equation (7) in (3a), we have

ih̄
∂ψ

∂t
= (V + mc2)ψ + [c2(σ · π)/ih̄]

∫ t

−∞
exp{−iB(t − τ)}(σ · π)ψ(τ) dτ . (8)

In a similar manner, we obtain the complete equation for ϕ:

ih̄
∂ϕ

∂t
= (V − mc2)ϕ + [c2(σ · π)/ih̄]

∫ t

−∞
exp{−iB ′(t − τ)}(σ · π)ϕ(τ) dτ , (9)

where B ′ = [(V + mc2)/h̄] and v(t) = θ(t) exp{−iB ′t}, which allows us to solve for ψ :

ψ(t) = cv(t) ∗ [(σ · π)/ih̄]ϕ(t) =
∫ t

−∞
c exp{−iB ′(t − τ)}[(σ · π)/ih̄]ϕ(τ) dτ . (10)

Thus, we have decomposed L2(R3, C4) as L2(R3, C4) = L2(R3, C2) ⊕ L2(R3, C2). One
copy of L2(R3, C2) contains the particle (positive energy) wave component, while the other
copy contains the antiparticle (negative energy) wave component. Which of these copies
corresponds to the components ψ = (ψ1, ψ2)

t and which to the components ϕ = (ϕ1, ϕ2)
t

depends, to some extent, on the properties of the scalar potential V . However, we will not
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consider this problem in greater detail in the present paper. An unsettled issue is the definition
of the appropriate inner product for the two subspaces, which will account for the quantum
constraint that the total probability integral is normalized. We can satisfy this requirement
if we set (ψ, χ) = ψ1χ1 + ψ2χ2 and (ψ, χ)A = (Aψ,Aχ), (ϕ, η)A′ = (A′ϕ,A′η), where
Aψ = cu(t) ∗ [(σ · π)/ih̄]ψ(t), A′ϕ = cv(t) ∗ [(σ · π)/ih̄]ϕ(t). Define the particle and
antiparticle inner products by

〈ψ, χ〉p =
∫

R3
{(ψ, χ) + (ψ, χ)A} dx, (11a)

〈ϕ, η〉ap =
∫

R3
{(ϕ, η) + (ϕ, η)A′ } dx, (12a)

so that

ρψ = |ψ |2 +

∣∣∣∣
∫ t

−∞
c exp{−iB(t − τ)}[(σ · π)/ih̄]ψ(τ) dτ

∣∣∣∣
2

, (11b)

ρϕ = |ϕ|2 +

∣∣∣∣
∫ t

−∞
c exp{−iB ′(t − τ)}[(σ · π)/ih̄]ϕ(τ) dτ

∣∣∣∣
2

. (12b)

The second term in equation (11b) (equation (12b)) comes directly from the definition of ϕ in
terms of ψ (the definition of ψ in terms of ϕ), see equations (7) and (10). Thus, it is clear that∫

R3 ρψ dx = ∫
R3 ρϕ dx = 1, so we have a complete separation of the particle and antiparticle

wavefunctions.
In the standard representation, the charge conjugation operator is Cψ = UCψ, with

UC = iβα2. A simple computation establishes the following theorem.

Theorem 1. Equations (8) and (9) are mapped into each other under the charge conjugation
transformation.

Equations (8) and (9) offer an interesting alternative to the many attempts to decompose
the Dirac equation into particle–antiparticle and/or parity-sensitive pairs. They also offer a
different approach to the study of large Z (hydrogen-like) atoms.

4. Interpretations

Writing the Dirac equation and the direct separation in two-component matrix form, we have

ih̄
∂

∂t

[
ψ

ϕ

]
=
[
(V + mc2) c(σ · π)

c(σ · π) (V − mc2)

] [
ψ

ϕ

]
, (13)

and

ih̄
∂

∂t

[
ψ

ϕ

]
=




(V + mc2)

+ [c2(σ · π)/ih̄][u ∗ (σ · π)]
0

0
(V − mc2)

+ [c2(σ · π)/ih̄][v ∗ (σ · π)]



[
ψ

ϕ

]
.

(14)

We call (14) the analytic diagonalization of the Dirac equation because the wavefunction has
not changed.

The standard approach to the diagonalization of the Dirac equation (without an external
potential V ) is via the Foldy–Wouthuysen representation. Assuming that A does not depend
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on t, the following generalization can be found in deVries [5]:

ih̄
∂

∂t

[
�1

�2

]
=


√

c2π2 − e
c
(σ · B) + m2c4 0

0 −
√

c2π2 − e
c
(σ · B) + m2c4


[

�1

�2

]
. (15)

In this case, [�1 �2]t = UFW[ψ ϕ]t and Hs = UFW HDU−1
FW

(see [3]). Equation (15) is studied

elsewhere [21], where it is shown that when A is zero, Hs = β
√

c2p2 + m2c4 has the following
analytic representation (see also [10]):

Hsf (x) = −µ2h̄2cβ

π2

∫
R3

{[
K0[µ‖x − y‖]

‖x − y‖ +
2K1[µ‖x − y‖]

µ‖x − y‖2

]

×
[

1

‖x − y‖ − 2πδ(x − y)

]}
f (y) dy, (16)

where ‖·‖ denotes the vector norm in R
3. Here, the Kn are modified Bessel functions of the

third kind and µ = mc/h̄. Equation (16) is of independent interest, since it is the first example
of a physically relevant operator which has a representation as the confinement of a composite
of three singularities, two negative and one (hard core) positive, within a Compton wavelength
such that, at the point of singularity, they cancel each other providing a finite result. The
second paper in this series is devoted to the square-root operator, where this result is discussed
in detail.

From equation (14), we conclude that the coupling of the particle and antiparticle
wavefunctions in the first-order form of the Dirac equation hides the second-order nonlocal time
nature of the equation. From (16), we see explicitly that (15) is nonlocal in space. Thus, the
implicit time nonlocality of the Dirac equation is mapped into the explicit spatial nonlocality
of the square-root equation by the Foldy–Wouthuysen transformation. These observations
imply that the Dirac Hamiltonian HD and the square-root Hamiltonian, Hs = UFWHDU−1

FW
,

are mathematically, but not (what we would normally mean by) physically equivalent.
Furthermore, it appears that the only way we can partially justify using the square-root equation
to interpret the Dirac equation is that they both square to give the Klein–Gordon equation. We
conclude that they can only be viewed as physically equivalent outside a Compton wavelength
where they both appear as point particles.

5. The hydrogen atom

In this section, we reconsider the standard analysis of the Dirac equation for the hydrogen
atom problem from an exact point of view. We assume that A = (µI × r)/r3, V = −h̄cγ /r ,
and γ = e2/h̄c. Rewrite (3a) and (3b) in eigenvalue form

(E − V − mc2)ψ = c(σ · π)ϕ, (17a)

(E − V + mc2)ϕ = c(σ · π)ψ. (17b)

Eliminating ϕ in terms of ψ and vice versa, we obtain the following equations:

(E − V − mc2)ψ = c2(σ · pV )(σ · π)

(E − V + mc2)2
ψ +

c2(σ · π)(σ · π)

(E − V + mc2)
ψ, (18a)

(E − V + mc2)ϕ = c2(σ · pV )(σ · π)

(E − V − mc2)2
ϕ +

c2(σ · π)(σ · π)

(E − V − mc2)
ϕ. (18b)
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(We can also get (18) from equations (8) and (9) via straightforward integration.) We call
(18a) and (18b) the Slater equations since they were first used by one of his students as early
as 1940 [12], and appeared in his book [13], first published in 1960 (see appendix 29). It is
surprising that Slater’s work is not well known. For obvious reasons, we concentrate on (18a).
First note that, if we drop the middle term and replace (E − V + mc2) by 2mc2, we get the
Pauli approximation to the Dirac equation:

(E − V − mc2)ψ = − eh̄

2mc
(σ · B)ψ +

π2

2m
ψ. (19)

As noted earlier, the Pauli equation was used to extract the hyperfine splitting portion of the
hydrogen spectrum to support the predictions of QED. It follows that the conditions that justify
the Pauli approximation and the dropping of the middle term of (18a) are both of importance
for the foundations.

There are a number of other equations and/or approximations that have been given the
name and/or used in lieu of the Pauli equation (see, for example, [14–16]). We do not
consider these equations since, although they are related to the Dirac equation, they do not
give additional information and it is not obvious that they have any more mathematical or
physical justification when applied to the s-states of hydrogen.

Recall that there is a finite probability of finding the electron at the origin in s-states, but
the required condition for the validity of (19) is (E − V + mc2) � 2mc2. Thus, this condition
is not satisfied for s-state calculations. It follows that use of the Pauli equation to compute the
hyperfine splitting of s-states is not convincing. On the other hand, the condition is easily seen
to be satisfied for all other states. A more reasonable approximation is to use |mc2 − E| � mc2

to replace (E − V + mc2) by 2mc2(1 + r0/r), where r0 = e2/(E + mc2) ∼= e2/2mc2. The
above condition is always satisfied (13 eV compared to 0.5 MeV). This approach also has the
additional advantage of removing the nonlinear eigenvalue problem posed by (18a) without
substantially affecting the final result. In this case, we have

(E − V − mc2)ψ = (σ · pV )(σ · π)

4m2c2(1 + r0/r)2
ψ +

(σ · π)(σ · π)

2m(1 + r0/r)
ψ. (20)

This equation is new, although Slater had all the tools to derive it. Using standard computations,
we get (see [13], h̄L = r × p is the angular momentum and h̄S is the spin, S = σ/2 and µI is
the nuclear magnetic moment)

(σ · π)(σ · π) = π2 − 2eh̄

c

{
8π

3
(S · µI )δ(r) +

[
3(S · r)(µI · r)

r5
− (S · µI )

r3

]}
, (21a)

(σ · pV )(σ · π) = 2e2h̄

r2

{
h̄

[
(S · L)

r
− d

dr

]
+

e

c

[
(S · µI )

r2
− (S · r)(µI · r)

r4

]}
. (21b)

Putting these expressions in (20), we have

(E − V − mc2)ψ = r0h̄

m(1 + r0/r)2r2

{
h̄

[
(S · L)

r
− d

dr

]

+
e

c

[
(S · µI )

r2
− (S · r)(µI · r)

r4

]}
ψ − eh̄

mc(1 + r0/r)

{
8π

3
(S · µI )δ(r)

+

[
3(S · r)(µI · r)

r5
− (S · µI )

r3

]}
ψ +

π2

2m(1 + r0/r)
ψ. (22)

When µI = 0, (22) becomes

(E − V − mc2)ψ = r0h̄
2

m(1 + r0/r)2r2

[
(S · L)

r
− d

dr

]
ψ +

p2

2m(1 + r0/r)
ψ. (23)
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Equation (23) has (using r0 = e2/(E + mc2)) the same eigenvalues as the unperturbed
Dirac equation, so that our interest centres on the following terms (op means operator):

− eh̄

mc(1 + r0/r)

{
8π

3
(S · µI )δ(r) +

[
3(S · r)(µI · r)

r5
− (S · µI )

r3

]
op

}
, (24a)

er0h̄

mc(1 + r0/r)2r2

[
(S · µI )

r2
− (S · r)(µI · r)

r4

]
op

. (24b)

The delta term in equation (24a), except for the additional factor (1 + r0/r)−1, would normally
be used to compute the hyperfine splitting of s-states in the Pauli approximation. It is easy to
see that, with this additional factor, the same calculation would give a value of zero for the
splitting. In all other states this factor is small (1  r0/r) and may be dropped.

Slater [13] used equation (24b) to compute the s-state (hyperfine) splitting and obtained
the correct result. Since this term is (part of the) focus of our investigation, we repeat
some of Slater’s calculations. In the s-state the total angular momentum J is equal to S.
Hence, following standard procedures, we replace [(S · µI /r

2) − ((S · r)(µI · r)/r4)]op by
(S · µI /S2)[(S2/r2) − ((S · r)2/r4)]op. If 〈A〉 denotes the average of the operator A, it is easy
to see that 〈(S · r)2〉 = 1

4 〈r2〉 and 〈S2〉 = 3
4 . The term of interest becomes

2er0h̄

3mc(1 + r0/r)2r4
(S · µI )op. (25a)

The important issue is the computation of the s-state expected value of

r0λ

(1 + r0/r)2r4
, (25b)

where λ = 2eh̄/3mc〈(S · µI )op〉ave. Slater [13] assumed the nonrelativistic radial
wavefunction for s-states. (For the 2s1/2 state, R(r) = 1√

2
η3/2

(
1 − 1

2 rη
)

exp
(− 1

2 rη
)

and

η = 1/rB, where rB = 0.529 178 × 10−10m is the Bohr radius.) Using the normalization∫∞
0 r2R(r)2 dr = 1, this led him to the computation of

λ

∫ ∞

0

r0R(r)2r2

(1 + r0/r)2r4
dr. (26a)

Setting ρ = ηr and ρ0 = ηr0, we have

1

2
η3ρ0λ

∫ ∞

0

(
1 − 1

2ρ
)2

exp(−ρ) dρ

(1 + ρ0/ρ)2ρ2
. (26b)

By a change of variables (u = ρ + ρ0) and integration by parts, it is easy to see that ρ0 is a
cut-off and that the dominant contribution to the expression (26b) is 1

2λη3 as ρ0 → 0+. (Note
that the integral is divergent but the factor ρ0 in front makes the product finite.) We get the
same result for all s-states, while it is not hard to show that equation (24b) is (almost) zero for
all other states.

It would appear that the correct approach for s-state (hyperfine) splitting gives the same
results as those obtained from the Pauli equation. Furthermore, equation (24b) introduces a
natural cut-off, which removes the conceptual difficulty of a point magnetic dipole interaction
as implied by use of the delta term in the Pauli equation. In addition, it is not hard to show that
Slater’s approach goes through, giving the same result, if we use (the correct) Dirac solution
for the first-order calculation.
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However, to provide input for the precise results of QED, we must first correct the
normalization condition to∫

[|ψ |2 + |(σ · p)ψ |2/4m2c2(1 + r0/r)2] dx = 1. (27)

Clearly, we expect that the additional term will give a very small correction. However, it is not
clear how small. For example, if it changes the hyperfine splitting values in the eight or ninth
decimal place (in GHz), it may well be an important correction. (For example, the measured
value of the 2s1/2-state hyperfine splitting in hydrogen is 0.177 566 850(10) GHz, see [15].)

We now approach the more difficult issue facing attempts to completely understand the
Dirac problem for full coupling, namely, the A2 term:

e2A2

2mc2(1 + r0/r)
= e2µ2

I sin2 θ

2mc2(1 + r0/r)r4
. (28)

In most treatments of the Dirac hydrogen atom problem, this term (with r0 = 0) is either
ignored or assumed to be small. Power counting shows that it cannot be ignored without
investigation. It is easy to show that this term will be small in all except s-states.

The first observation is that this term appears to be more singular than the Coulomb
potential, so that perturbation analysis may not be appropriate. However, this is not completely
clear since the sin2 θ term vanishes on the spin axis and could strongly modify the singular
nature of this term.

If we take an engineering approach and assume that we can treat the A2 term as a
perturbation, then for the 2s-state the expected value is∫ ∞

0

r0µ
2
IR(r)2r2

(1 + r0/r)r4
dr

∫ π

0
sin2 θ(sin θ) dθ = 1

3
η3ρ0µ

2
I

∫ ∞

0

(
1 − 1

2ρ
)2

exp(−ρ) dρ

(1 + ρ0/ρ)ρ2
. (29)

In atomic units, η = 1, µ0 = (1/2)γ, r0 = ρ0 = (1/2)γ 2, g2
N = 30.9136,

〈
I2

op

〉
ave = (3/4)

and µ2
I = (1/1836)2g2

Nµ2
0 I2

op, so we can write (29) as

1

3
µ2

I

∫ ∞

0

[
1

ρ
+

ρ0

4
−

(
1 + ρ0 + 1

4ρ2
0

)
(ρ0 + ρ)

]
exp(−ρ) dρ. (30)

Using a table of integrals (see [17], pp 925 and 927) and the cut-off prescription of Bethe [16]
(p 110), we have

∫∞
ε

(1/ρ) exp(−ρ) dρ = −Ei(−ε), and −∫∞
0 1/(ρ0 + ρ) exp(−ρ) dρ =

eρ0Ei(−ρ0), where Ei(−ε) = C + ln ε +
∑∞

k=1 (−1)k[εk/k(k!)] and C is Euler’s constant.
Using these results in (30), we get

1

3
µ2

I

{
lim
ε→0

∫ ∞

ε

1

ρ
exp(−ρ) dρ +

∫ ∞

0

[
ρ0

4
−

(
1 + ρ0 + 1

4ρ2
0

)
(ρ0 + ρ)

]
exp(−ρ) dρ

}

= 1

3
µ2

I

[
− lim

ε→0
Ei(−ε) +

ρ0

4
+ eρ0

(
1 + ρ0 +

1

4
ρ2

0

)
Ei(−ρ0)

]
. (31)

It is clear that −Ei(−ε) will diverge like −ln ε as ε → 0. If we fix ε at ρ0, and note that
eρ0 ∼= 1 + ρ0, then

1

3
µ2

I

[
−Ei(−ρ0) +

ρ0

4
+ eρ0

(
1 + ρ0 +

1

4
ρ2

0

)
Ei(−ρ0)

]

∼= 1

3
µ2

I

{
ρ0

4
+

(
2ρ0 +

5

4
ρ2

0

)[
C + ln ρ0 +

∞∑
k=1

(−1)kρk
0

k(k!)

]}
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⇒ 1

3
ρ0µ

2
I

∫ ∞

0

(
1 − 1

2ρ
)2

exp(−ρ) dρ

(1 + ρ0/ρ)ρ2

∼= 1

16
γ 2

(
1

1836

)2

g2
N

{
1

8
γ 2 +

(
γ 2 +

5

16
γ 4

)[
C + ln

1

2
γ 2 − 1

2
γ 2

]}
. (32)

If we note that (1/1836)2 ∼= (1/13)2γ 2, then this last term is of order (>) γ 7. Thus, if there is
(mathematical) support for the calculation procedures, the A2 term does not make a significant
contribution. In the next section, we discuss an exact separation of variables for full coupling,
Coulomb plus magnetic dipole vector potentials, which will allow us to partially answer this
question.

6. Separation of variables

In this section, we show that an exact separation of variables is possible via a new approach
based on earlier work of Harish-Chandra [18] and Villalba [19]. To begin, we reconsider
equation (3) in eigenvalue form with A = (µI × r)/r3, V = −h̄cγ /r and γ = Ze2/h̄c.
Following Dirac [20], set I4 = diag(1, 1, 1, 1), αi = ρ1�i , ρ3 = β, where

�i =
[
σi 0
0 σi

]
, ρ1 =

[
0 I2

I2 0

]
, ρ2 =

[
0 −iI2

iI2 0

]
. (33)

It follows that ρi�j = �jρi (i, j = 1, 2, 3), and equation (3) can be written in the form

HD� = E� =
[
cρ1� ·

(
p − e

c
A
)

+ mc2ρ3 + V I4

]
�. (34)

Following Harish-Chandra [18], we represent the components of � in spherical
coordinates:

�r = (�1 cos ϕ + �2 sin ϕ) sin θ + �3 cos θ

�θ = r(�1 cos ϕ + �2 sin ϕ) cos θ − r�3 sin θ

�ϕ = r(�2 cos ϕ − �1 sin ϕ) sin θ

(35)

so that

� · p = �rpr +
�θpθ

r
+

�ϕpϕ

r sin θ
. (36)

With the proton’s magnetic moment lying along the z-axis, the vector potential (in spherical
coordinates) takes the form Ar = Aθ = 0 and Aϕ = (|µI|/r2) sin θ , so that

� · A = �ϕAϕ = �ϕ|µI |
r2

sin θ. (37)

It is well known that the orbital angular momentum Lz = −i∂/∂ϕ about the z-axis is not a
conserved quantity (taking h̄ = 1 for now). However, it is easy to show that the total angular
momentum about the z-axis, LzI4 + 1

2�3, commutes with HD:[
HD,LzI4 + 1

2�3
] = 0, (38)

so that it is conserved. Therefore, we can choose solutions of (34) in the form

�(r, θ, ϕ) = exp
[
i
(
m − 1

2�3
)
ϕ
]
�1(r, θ), (39)

where �1(r, θ) does not depend on ϕ and m is a half odd integer with both positive and
negative values allowed.
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Now using the exact relations:

�r = exp

{
− i

2
�3ϕ

}
exp

{
− i

2
�2θ

}
�3 exp

{
i

2
�2θ

}
exp

{
i

2
�3ϕ

}

�θ = r exp

{
− i

2
�3ϕ

}
exp

{
− i

2
�2θ

}
�1 exp

{
i

2
�2θ

}
exp

{
i

2
�3ϕ

}

�ϕ = r sin θ exp

{
− i

2
�3ϕ

}
exp

{
− i

2
�2θ

}
�2 exp

{
i

2
�2θ

}
exp

{
i

2
�3ϕ

} (40)

and the easily proved relations:

exp

{
i

2
�2θ

}
∂

∂θ
=
(

∂

∂θ
− i

2
�2

)
exp

{
i

2
�2θ

}
(41a)

and

exp

{
i

2
�2θ

}
exp

{
i

2
�3ϕ

}
∂

∂ϕ

=
{

∂

∂ϕ
− i

2
(�3 cos θ − �1 sin θ)

}
exp

{
i

2
�2θ

}
exp

{
i

2
�3ϕ

}
, (41b)

equation (34) takes the form[
−icρ1

{
�3

(
∂

∂r
+

1

r

)
+

�1

r

[(
∂

∂θ
+

1

2
cot θ

)
I4 − �3

(
m csc θ − e

c
|µI|sin2 θ

)]}

+ mc2ρ3 + (V − E)I4

]
�0 = 0, (42)

where �0(r, θ, ϕ) ≡ exp
{

i
2�2θ + imϕI4

}
�1(r, θ).

In order to complete our separation, we now follow the method due to Villalba [19].
Setting �0 = ��, where � is (an operator) to be determined so that

K1� = i

[
−icρ1r�3

(
∂

∂r
+

1

r

)
+ r(mc2ρ3 + (V − E)I4)

]
�0 = −ω� (43a)

and

K2� = i(−icρ1)�1

[(
∂

∂θ
+

1

2
cot θ

)
I4 − �3

(
m csc θ − e

c
|µI| sin2 θ

)]
�0 = ω�. (43b)

Then (K1 + K2)� = 0. Using our definition of �0, we have

K1 = cρ1r

(
∂

∂r
+

1

r

)
�3� + irmc2ρ3� + ir(V − E)� (44a)

and

K2 = c

[(
∂

∂θ
+

1

2
cot θ

)
ρ1�1� + i�2�

(
m csc θ − e

c
|µI| sin2 θ

)]
. (44b)

We obtain a complete separation provided that [K1,K2] = 0. It is easy to see that this
requirement imposes the following conditions (recall that αi = ρ1�i):

(1) [α3�,α1�] = 0, (2) [α3�,α2�] = 0, (3) [ρ3�,α1�] = 0, (45a)

(1) [ρ3�,α2�] = 0, (2) [�,α1�] = 0, (3) [�,α2�] = 0. (45b)

If �−1 exists, then from (45b(2)) we obtain [�,α1] = 0 and from (45b(3)), [�,α2] = 0.
From (45a(1)),

[α3�,α1�] = [α3, α1]�2 + α1[α3,�]� = 2i�2�
2 + α1[α3,�]�. (46)
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Then, since α−1
i = αi (i = 1, 2, 3),

[α3,�] = −2iα1�2� = −2iρ1�1�2� = −2iρ1(i�3)� = 2α3� ⇒ {α3,�} = 0

(i.e., α3 and � anticommute). Similar procedures yield the same conditions from (45a(2)) and
(45b(1)). Now write

� =
[
A B

C D

]
,

where A,B,C and D are 2 × 2 matrices. Expanding these matrices as series of the form

A = a0I2 +
3∑

i=1

aiσi,

with similar expressions for B,C and D, and using [�,α1] = [�,α2] = {�,α3} = 0 shows
that

� = b

[
0 σ3

−σ3 0

]
, b = const. (47)

Setting b equal to 1, this completes the separation of variables for system (42).
We now consider the eigenvalue equations:

K1� =
{
cρ1r

(
∂

∂r
+

1

r

)
�3� + irmc2ρ3� + ir(V − E)�

}
� = −ω�, (48)

K2� = c

[(
∂

∂θ
+

1

2
cot θ

)
ρ1�1� + iρ1�2�

(
m csc θ − e

c
|µI| sin2 θ

)]
� = ω�, (49)

for the radial and angular equations, respectively.

6.1. Solution of the radial equations

Putting � = [�1,�2]t , with �1 and �2 2-spinors, we obtain from equation (48) (reinstating
the relevant factors of h̄):

−r

(
∂

∂r
+

1

r

)
�1 + ir

(
mc2 − E

h̄c
− γ

r

)
σ3�2 = − ω

h̄c
�1, (50a)

r

(
∂

∂r
+

1

r

)
�2 + ir

(
mc2 + E

h̄c
+

γ

r

)
σ3�1 = − ω

h̄c
�2. (50b)

Now put �1 = ςa(r),�2 = ηb(r), where ς, η are 2-spinors and a(r), b(r) are functions.
Substitution into equations (50a) and (50b) gives

−r

(
∂

∂r
+

1

r

)
ςa(r) + ir

(
mc2 − E

h̄c
− γ

r

)
(σ3η)b(r) = − ω

h̄c
ςa(r),

r

(
∂

∂r
+

1

r

)
ηb(r) + ir

(
mc2 + E

h̄c
+

γ

r

)
(σ3ς)a(r) = − ω

h̄c
ηb(r).

If we choose η = [η1, η2]t and ς = [η1,−η2]t , we can eliminate the spinors from the above
equations to get (σ3η = ς, σ3ς = η):

−r

(
∂

∂r
+

1

r

)
a(r) + ir

(
mc2 − E

h̄c
− γ

r

)
b(r) = − ω

h̄c
a(r), (51a)
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r

(
∂

∂r
+

1

r

)
b(r) + ir

(
mc2 + E

h̄c
+

γ

r

)
a(r) = − ω

h̄c
b(r). (51b)

We can now apply standard methods, putting a(r) = u(r)/r, b(r) = v(r)/r in (51a) and
(51b) yields the equations

−du

dr
+

ω

h̄c

u

r
+ i

(
mc2 − E

h̄c
− γ

r

)
v = 0, (52a)

dv

dr
+

ω

h̄c

v

r
+ i

(
mc2 + E

h̄c
+

γ

r

)
u = 0. (52b)

These equations are very close to those for the Dirac–Coulomb problem (except for the
factor of i). As in that problem, make the change of independent variable y = 2εr with
ε = √

m2c4 − E2/h̄c and change dependent variables via (we follow [14], p 179)

u = e−y/2
√

mc2 − E(φ1 − φ2),

v = e−y/2
√

mc2 + E(φ1 + φ2),

from which the following equations for φ1 and φ2 are obtained:

dφ1

dy
=
(

1

2
− i

γ

h̄cεy
mc2

)
φ1 +

(−ω

h̄cy
+

i

2h̄c
− i

γ

h̄cεy
E

)
φ2, (53a)

dφ2

dy
= −

(
ω

h̄cy
+

i

2h̄c
− i

γ

h̄cεy
E

)
φ1 +

(
1

2
+ i

γ

h̄cεy
mc2

)
φ2. (53b)

We now look for series solutions of these equations in the form

φ1 =
∞∑

q=0

αqy
q+δ, φ2 =

∞∑
q=0

βqy
q+δ,

where δ is to be determined. Substitution into equations (53) gives the following relations:

∞∑
q=0

βq

(
q + δ − i

γmc2

h̄cε

)
yq+δ−1 = − i

2

∞∑
q=1

αq−1y
q+δ−1

−
(

ω

h̄c
− i

γE

h̄cε

) ∞∑
q=0

αqy
q+δ−1 +

1

2

∞∑
q=0

βq−1y
q+δ−1, (54a)

∞∑
q=0

αq

(
q + δ +

iγmc2

h̄cε

)
yq+δ−1 = 1

2

∞∑
q=1

αq−1y
q+δ−1

+
i

2h̄c

∞∑
q=1

βq−1y
q+δ−1 −

(
ω

h̄c
+

iγE

h̄cε

) ∞∑
q=0

βqy
q+δ−1. (54b)

For q = 0, equations (54a) and (54b) give(
ω

h̄c
− iγE

h̄cε

)
α0 +

(
δ − iγmc2

h̄cε

)
β0 = 0,(

δ +
iγmc2

h̄cε

)
α0 +

(
ω

h̄c
+

iγE

h̄cε

)
β0 = 0.



Analytic representation of the Dirac equation 6967

In order that |α0|2 + |β0|2 �= 0, the determinant of the coefficients must vanish. This gives
δ2 = (ω/h̄c)2 − γ 2, which is analogous to the Dirac–Coulomb result. There are two possible
values for δ. Taking the positive one (for obvious reasons), we get

β0

α0
= − (ω/h̄c) − (iγE/h̄cε)

δ − i(γmc2/h̄cε)
= − δ + i(γmc2/h̄cε)

(ω/h̄c) + (iγE/h̄cε)
. (55)

Returning to (54), we obtain the following recursion relations:(
q + δ − iγmc2

h̄cε

)
βq = − i

2h̄c
αq−1 −

(
ω

h̄c
− iγE

h̄cε

)
αq +

1

2
βq−1, (56a)

(
q + δ +

iγmc2

h̄cε

)
αq = 1

2
αq−1 +

i

2h̄c
βq−1 −

(
ω

h̄c
+

iγE

h̄cε

)
βq. (56b)

Now, by some tedious (and uninteresting) algebraic manipulations similar to those in Greiner
[14], we get (a equals a conjugate)

βq

αq

= q + K

i(q + K)
, q � 1, K = δ + i

ω

h̄c
− i

γ

h̄cε
(mc2 − iE), (57)

αq = q − 1 − n′

q(q + 2δ)

(
q + K

q − 1 + K

)
αq−1, q � 2, n′ = γE

h̄cε
− δ. (58)

Iterating equation (58) gives

αq = (q − 1 − n′)(q − 2 − n′) · · · (1 − n′)
q!(q + 2δ)(q − 1 + 2δ) · · · (2 + 2δ)

(
q + K

1 + K

)
α1. (59)

We now must express α1 in terms of α0. To do this, set q = 1 in equations (56a) and (56b)
and get (

i(1 + δ) +
γmc2

h̄cε

)
β1 = 1

2
α0 +

i

2h̄c
β0 −

(
iω

h̄c
+

γE

h̄cε

)
α1, (60a)

(
(1 + δ) +

iγmc2

h̄cε

)
α1 = 1

2
α0 +

i

2h̄c
β0 −

(
ω

h̄c
+

iγE

h̄cε

)
β1. (60b)

Use one of these equations to eliminate β1, so that the other can be used to determine α1 in
terms of α0 and β0. Since β0 is proportional to α0 from equation (55), we obtain

α1 =
(

1 + K

1 + 2δ

)(
K − 2(iω/h̄c)

δ − i(γmc2/h̄cε)

)
α0

2
⇒ αq = (q − 1 − n′) · · · (1 − n′)

q!(q + 2δ) · · · (2 + 2δ)

×
(

q + K

1 + 2δ

)(
K − 2(iω/h̄c)

δ − i(γmc2/h̄cε)

)
α0

2
. (61)

Recall that the confluent hypergeometric function is defined by (see [17])

1F1(a; b; x) =
∞∑

n=0

(a)n

(b)n

xn

n!
, (a)n = a(a + 1) · · · (a + n − 1) = �(a + n)

�(a)
. (62)

We can write

(q + 2δ)(q − 1 + 2δ) · · · (2 + 2δ)(1 + 2δ)

= (1 + 2δ)(1 + 2δ + 1) · · · (1 + 2δ + q − 1) = (1 + 2δ)q,
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and, using the decomposition q + K = q − n′ + [(n′ + K)/(−n′)](−n′), in the numerator of
equation (61), we get

(q − 1 − n′)(q − 2 − n′) · · · (1 − n′)(q + K)

= [(n′ + K)/(−n′)](−n′)(−n′ + 1) · · · (−n′ + q − 1)

= (1 − n′)q + [(n′ + K)/(−n′)](−n′)q .

We now have that

φ1(y) = yδ

(
K − 2(iω/h̄c)

δ − i(γmc2/h̄cε)

)
α0

2

∞∑
q=0

[(1 − n′)q + [(n′ + K)/(−n′)](−n′)q]

q!(1 + 2δ)q
yq

= yδ

(
K − 2(iω/h̄c)

δ − i(γmc2/h̄cε)

)
α0

2

{
1F1(1 − n′; 1 + 2δ; y)

+

[
(n′ + K)

(−n′)

]
1F1(−n′; 1 + 2δ; y)

}
. (63)

In a similar fashion, we can solve for the β coefficients to get

βq = i
(q + K)(q − 1 − n′) · · · (1 − n′)
q!(q + 2δ) · · · (2 + 2δ)(1 + 2δ)

(
K − 2(iω/h̄c)

ω/h̄c − i(γE/h̄cε)

)
β0

2
. (64)

This leads to

φ2(y) = yδ

(
K − 2(iω/h̄c)

ω/h̄c − i(γE/h̄cε)

)
iβ0

2

{
1F1(1 − n′; 1 + 2δ; y)

+

[
(n′ + K)

(−n′)

]
1F1(−n′; 1 + 2δ; y)

}
. (65)

We can now obtain the eigenfunctions using

� =
[
�1

�2

]
=
[
ςa(r)

ηb(r)

]
=



(

η1

−η2

)
a(r)(

η1

η2

)
b(r)


 , (66)

where

a(r) = (2ε/y)(mc2 − E)1/2 e−y/2(φ1 − φ2)

= εyδ−1(mc2 − E)1/2 e−y/2

(
K − 2(iλ/h̄c)

δ − i(γmc2/h̄cε)

)
α0

×
{

(1 + i)[1F1(1 − n′; 1 + 2δ; y) − 1F1(−n′; 1 + 2δ; y)]

+

[
(K + iK)

(−n′)

]
1F1(−n′; 1 + 2δ; y)

}
, (67)

and

b(r) = (2ε/y)(mc2 + E)1/2 e−y/2(φ1 + φ2)

= εyδ−1(mc2 + E)1/2 e−y/2

(
K − 2(iλ/h̄c)

δ − i(γmc2/h̄cε)

)
α0
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×
{

(1 − i)[1F1(1 − n′; 1 + 2δ; y) − 1F1(−n′; 1 + 2δ; y)]

+

[
(K − iK)

(−n′)

]
1F1(−n′; 1 + 2δ; y)

}
. (68)

Thus, we see that the solutions of the radial equations are linear combinations of the same types
of confluent hypergeometric functions that occur as eigenfunctions of the Dirac–Coulomb
problem. However, our parameters (n′ and δ) are different from corresponding ones that
appear in the Dirac–Coulomb case. Furthermore, our coefficients are complex numbers.

To obtain the eigenvalues E, we follow the standard approach and require that n′ is
an integer so that each hypergeometric series reduces to a polynomial and, consequently,
the eigenfunctions are normalizable (compare (39), the definition of �0 following (42), the
definitions of a(r) and b(r) following (56), (67) and (68)). This gives

En′ = ±mc2

{
1 +

γ 2[
n′ +

√
(ω/h̄c)2 − γ 2

]2

}−1/2

, (69)

and, following the argument of Greiner [14] (p 182) in the Dirac–Coulomb case, we discard the
minus sign. From the above, we see that the energy eigenvalues are of the same form as in the
Dirac–Coulomb case. The only difference is that the quantity

(
j + 1

2

)2
in the Dirac–Coulomb

problem is replaced by (ω/h̄c)2 (where j is the total angular momentum quantum number).
In order to identify the similarities and differences between the functions a(r), b(r) in

(67), (68), respectively, with the corresponding Dirac–Coulomb eigenfunctions (see, e.g.,
[14], chapter 9, equation (36)), we compare the corresponding probability densities of the
radial equations. Recall that (67) and (68) are complex valued whereas the corresponding
Dirac–Coulomb eigenfunctions are real valued, so we should expect some differences.

Before computing the absolute square of a(r) and b(r), let

E = En′ = mc2


1 +

γ 2(
n′ +

√(
ω
h̄c

)2
+ γ 2

)2




−1/2

,

A1 = 2ε2(mc − E)

[(
δ − γE

h̄cε

)2
+
(

ω
h̄c

+ γmc2

h̄cε

)2

(
ω
h̄c

)2
+
(

γE

h̄cε

)2

]
|α0|2,

B1 = 2ε2(mc + E)

[(
δ − γE

h̄cε

)2
+
(

ω
h̄c

+ γmc2

h̄cε

)2

(
ω
h̄c

)2
+
(

γE

h̄cε

)2

]
|α0|2

A2 = 1

n′

(
δ +

ω

h̄c
− γ

√
mc2 + E√
mc2 − E

)
, B2 = 1

n′

(
δ − ω

h̄c
+ γ

√
mc2 + E√
mc2 − E

)
,

A3 =
(

ω

h̄c

)2

+

(
γE

h̄cε

)2

− δγ

√
mc2 + E√
mc2 − E

+
ω

h̄c

(
δ − γ

√
mc2 + E√
mc2 − E

)
+

γ 2mc2E

(h̄cε)2
,

B3 =
(

ω

h̄c

)2

+

(
γE

h̄cε

)2

+ δγ

√
mc2 + E√
mc2 − E

− ω

h̄c

(
δ + γ

√
mc2 + E√
mc2 − E

)
− γ 2mc2E

(h̄cε)2
.

(70)

Now, using the definition of K from (57), we can write the absolute square of (67) and (68) as
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|a(r)|2 = A1

{
FI(y)2 − 2FI(y)FII(y)(1 + A2) + FII(y)2(1 + 2A2) +

2

(n′)2
A3

}
y2δ−2 e−y,

(71)

|b(r)|2 = B1

{
FII(y)2 − 2FI(y)FII(y)(1 + B2) + FI(y)2(1 + 2B2) +

2

(n′)2
B3

}
y2δ−2 e−y,

(72)

where

FI(y) = 1F1(−n′; 1 + 2δ; y) and FII(y) = 1F1(1 − n′; 1 + 2δ; y).

In order to facilitate quantitative comparison with the Dirac–Coulomb radial
wavefunctions, as in Greiner, we need to convert equations (71) and (72) to normalized form,
by requiring that

∫∞
0 (|a(r)|2 + |b(r)|2)r2 dr = 1. This condition determines the quantity

|α0|2. After some simplifying calculations, if we set

�1 =
√

(n′ + δ)2 + γ 2 + (n′ + δ), �2 =
√

(n′ + δ)2 + γ 2 − (n′ + δ)

A′
1 = 4γ 3

(
mc

h̄

)3
�2

[�1 − (n′ + δ)]4D
, B ′

1 =
(

�1

�2

)
A′

1

(73)

A′
2 = 1

n′

(
δ +

ω

h̄c
− γ

(
�1

�2

)1/2
)

, B ′
2 = 1

n′

(
δ − ω

h̄c
+ γ

(
�2

�1

)1/2
)

,

A′
3 =

(
ω

h̄c

)2

+ (n′ + δ)2 −
(

δω

h̄c

)
− γ

(
δ +

ω

h̄c

)(
�1

�2

)1/2

+ (n′ + δ)[�1 − (n′ + δ)],

B ′
3 =

(
ω

h̄c

)2

+ (n′ + δ)2 −
(

δω

h̄c

)
+ γ

(
δ − ω

h̄c

)(
�1

�2

)1/2

− (n′ + δ)[�2 + (n′ + δ)],

(74)

the normalized version of (71) becomes

|a(r)|2n = (A′
1/D)

{
FI(y)2 − 2FI(y)FII(y)(1 + A′

2) + FII(y)2(1 + 2A′
2) +

2

(n′)2
A′

3

}
y2δ−2 e−y,

(75)

|b(r)|2n = (B ′
1/D)

{
FI(y)2 − 2FI(y)FII(y)(1 + B ′

2) + FII(y)2(1 + 2B ′
2) +

2

(n′)2
B ′

3

}
y2δ−2 e−y.

(76)

The constant D in equations (75) and (76) comes from the normalization requirement, and is
defined by (h1 = (n′ + δ)/[�1 − (n′ + δ)], h2 = (n′ + δ)[�1 − (n′ + δ)])

D = J1 +

{
2ωh1

n′h̄c
− 2

(
1 +

δ

n′

)
+

γ

n′ (1 − h1)

(
�1

�2

)1/2

− γ

n′ (1 + h1)

(
�2

�1

)1/2
}

J2

+

{
1 +

2δ

n′ +
2

(n′)2

[(
ω

h̄c

)2

+ (n′ + δ)2

]
− 2h1

[
ω

n′h̄c
+

1

(n′)2

(
δω

h̄c
+ h2

)]

− γ

(
1

n′ +
δ

(n′)2
+

ω

(n′)2h̄c

)
(1 − h1)

(
�1

�2

)1/2

+ γ

(
1

n′ +
δ

(n′)2
− ω

(n′)2h̄c

)
(1 + h1)

(
�2

�1

)1/2
}

J3
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J1 =
∫ ∞

0
[FII(y)]2y2δ−2 e−y dy

= �2(1 + 2δ)

n′−1∑
n=0

n′−1∑
m=0

(−1)n+m

(
n′ − 1

n

)(
n′ − 1

m

)
�(n + m + 1 + 2δ)

�(n + 1 + 2δ)�(m + 1 + 2δ)
,

J2 =
∫ ∞

0
FI(y)FII(y)y2δ−2 e−y dy

= �2(1 + 2δ)

n′−1∑
n=0

n′∑
m=0

(−1)n+m

(
n′ − 1

n

)(
n′

m

)
�(n + m + 1 + 2δ)

�(n + 1 + 2δ)�(m + 1 + 2δ)
,

J3 =
∫ ∞

0
[FI(y)]2y2δ−2 e−y dy

= �2(1 + 2δ)

n′∑
n=0

n′∑
m=0

(−1)n+m

(
n′

n

)(
n′

m

)
�(n + m + 1 + 2δ)

�(n + 1 + 2δ)�(m + 1 + 2δ)
.

Equations (75) and (76) are to be compared to the normalized Dirac–Coulomb probability
densities ([14], p 182, equation (36)): (� = �1 − (n′ + δ))

|f (r)|2n = 2γ 3

(
mc

h̄

)3

�2�
−5(� − κ)−1 �(n′ + 1 + 2δ)

�2(1 + 2δ)n′!
× [(� − κ)FI (y) + n′FII (y)]2y2δ−2 e−y, (77)

|g(r)|2n = 2γ 3

(
mc

h̄

)3

�1�
−5(� − κ)−1 �(n′ + 1 + 2δ)

�2(1 + 2δ)n′!
× [(� − κ)FI(y) − n′FII(y)]2y2δ−2 e−y. (78)

We have converted Greiner’s notation to our own in order to make comparison easy. In the
above two equations, one should replace ω/h̄c by κ in the definition of δ (see the discussion
prior to (55)), where

κ ≡
{

−(
j + 1

2

)
, j = l − 1

2(
j + 1

2

)
, j = l − 1

2 .

In figures 1–6, we have restricted our comparison of densities to the 2s1/2 and 2p1/2 states.
These are the most important cases for two reasons because they are the ones involved in the
Lamb shift, and these are the states where we expect equations (75) and (76) to differ the most
from (77) and (78). In the figures, we have plotted the quantities:

|A(r)|2 = |a(r)|2n�(1 + 2δ)

2γ 3
(

mc
h̄

)3
y2δ−2

max e−ymax

, |B(r)|2 = |b(r)|2n�(1 + 2δ)

2γ 3
(

mc
h̄

)3
y2δ−2

max e−ymax

|F(r)|2 = |f (r)|2n�(1 + 2δ)

2γ 3
(

mc
h̄

)3
y2δ−2

max e−ymax

, |G(r)|2 = |g(r)|2n�(1 + 2δ)

2γ 3
(

mc
h̄

)3
y2δ−2

max e−ymax

versus y = [2(
√

m2c4 + E2)/h̄c]r , where ymax � 15 for all cases. This allows one to clearly
see the difference between our results and those for the Dirac–Coulomb problem, especially
in the region about the origin.
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Figure 1. κ = 1(2p1/2-state), |A(r)|2 (thin) versus |F(r)|2 (thick).

Figure 2. κ = 1(2p1/2-state), |B(r)|2 (thin) versus |G(r)|2 (thick).

Figure 3. κ = 1(2p1/2-state), |A(r)|2 + |B(r)|2 (thin) versus |F(r)|2 + |G(r)|2 (thick).
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Figure 4. κ = −1(2s1/2-state), |A(r)|2 (thin) versus |F(r)|2 (thick).

Figure 5. κ = −1(2s1/2-state), |B(r)|2 (thin) versus |G(r)|2 (thick).

Figure 6. κ = −1(2s1/2-state), |A(r)|2 + |B(r)|2 (thin) versus |F(r)|2 + |G(r)|2 (thick).
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For the 2p1/2- and 2s1/2-states, κ = 1 and κ = −1, respectively; the quantum number
n′ = 1 in both cases so that the confluent hypergeometric functions in (75) and (76) simplify
to FI(y) = 1 − y/(1 + 2δ), and FII(y) = 1. Note that, because we replaced ω/h̄c by κ ,
our eigenvalues are the same as in the Dirac–Coulomb case and we do not need to solve the
angular equations for our graphs.

For the 2p1/2-state(κ = 1), we have plotted |A(r)|2 versus |F(r)|2, |B(r)|2 versus |G(r)|2
and |A(r)|2 + |B(r)|2 versus |F(r)|2 + |G(r)|2. The same approach is also followed for the
2s1/2-state(κ = −1). We see that, as expected, the graph of |A(r)|2 differs considerably
from |F(r)|2 and |B(r)|2 differs from |G(r)|2 for small values of r but approach each
other for large values of r . The important point is that, in both the 2p1/2-state and the
2s1/2-state, the probability density |A(r)|2 + |B(r)|2 diverges at an earlier stage compared
to |F(r)|2 + |G(r)|2. This reflects the additional singular nature of the equation when the
magnetic moment is included and further supports our contention that treating the magnetic
moment as a perturbation may not be valid.

It appears in figure 2 that |G(r)|2 goes to zero, but this is not the case. It actually diverges
near r = 0, but the scale is so small that it cannot be shown on the graph.

6.2. The angular equations

We now investigate equation (49). Using the matrix (47) for �, the angular equations become,
upon reinserting the appropriate factors of h̄ and using the spinor relations (m̃ = m/h̄,

z = e|µI|/h̄c), (
d

dθ
+

1

2
cot θ

)
η2 + (m̃ csc θ − z sin2 θ)η2 = − ω

h̄c
η1 (79a)

(
d

dθ
+

1

2
cot θ

)
η1 − (m̃ csc θ − z sin2 θ)η1 = ω

h̄c
η2. (79b)

Making the change of variable x = cos θ transforms (79) to[
(1 − x2)1/2 d

dx
−

(
m̃ + 1

2x
)

(1 − x2)1/2
+ z(1 − x2)

]
η2 = ω

h̄c
η1, (80a)

[
(1 − x2)1/2 d

dx
+

(
m̃ − 1

2x
)

(1 − x2)1/2
− z(1 − x2)

]
η1 = − ω

h̄c
η2. (80b)

These are generalizations of equations that lead to the associated Legendre equations. In order
to see the differences, use (80a) to solve for η1 and put this in (80b) to obtain an equation for
η2 (ω = ω/h̄c):{

(1 − x2)η′′ − 2xη′ +

[
ω2 − 1

2
− m̃2 + m̃x + 1

4

(1 − x2)

]
η

+ [2z(m̃ − x)(1 − x2)1/2 − z2(1 − x2)2]η2

}
= 0. (81a)

The corresponding equation for η1 is:{
(1 − x2)η′′

1 − 2xη′
1 + ω − 1

2
− m̃2 − m̃x + 1

4

(1 − x2)
η1 + 2z(m̃ + x)(1 − x2)1/2 − z2(1 − x2)2η1

}
= 0.

(81b)
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The term in braces is close to the (general) form of Legendre’s differential equation, but
is clearly different (see [17]). The deviation from Legendre’s equation reflects the lack of
spherical symmetry, caused in part by the magnetic moment potential, as reflected by the
terms multiplied by z. Note that the equation is not Legendre’s equation, even when z = 0.
This reflects the fact that the Dirac equation does not conserve angular momentum. Thus, the
solutions of (81a) will be interesting generalizations of the Legendre functions, even when
z = 0. We are currently unable to construct an exact analytic solution of equation (81a).
Interestingly, it is the square-root term that prevents the use of standard (analytic) solution
methods. A detailed study of this equation is in progress.

Problems. We can now identify the problems that cloud our complete understanding of the
Dirac equation and its relation to the hydrogen spectrum.

• Physical. The basic physical problem is to construct a complete solution for the angular
eigenvalue problem for the Dirac equation with the Coulomb and magnetic dipole
interaction (equation (81a)).

• Mathematical. A basic mathematical problem is to prove or disprove that perturbation
theory can (or cannot) be applied to equation (25a) and the A2 term in equation (28)
(using (27)).

Since equation (81a) is not one of the standard forms, we may be forced to use approximation
methods to solve it. It appears to require some new ideas for its analytic solution. This would
be preferred since our separation of variables method does not allow us to directly explore the
questions posed.

7. Conclusion

In this paper, we have shown that the full (minimal coupling) Dirac equation can be analytically
separated (diagonalized) into particle and antiparticle components without transforming the
wavefunctions, as is done by the Foldy–Wouthuysen method. This diagonalization reveals
the nonlocal time behaviour of the particle–antiparticle relationship. This discovery naturally
raises the questions about the zitterbewegung. Although we have not considered this problem in
detail, preliminary analysis leads us to believe that a more physically reasonable interpretation
of the zitterbewegung and the result that a velocity measurement (of a Dirac particle) at any
instant in time is ±c are reflections of the fact that the Dirac equation makes a spatially
extended particle appear as a point in the present by forcing it to oscillate between the past
and future at speed c. From this we infer that although the form of the Dirac equation serves
to make time and space appear on an equal footing mathematically, it is clear that they are not
on an equal footing from a physical point of view. On the other hand, the Foldy–Wouthuysen
transformation, which connects the Dirac and square-root operator, is unitary. Reflection
on these results suggests that a more refined notion than the mathematical one of unitary
equivalence may be required for physical systems.

We have also shown that one of the difficult issues facing attempts to completely
understand the Dirac problem for full coupling is the singular nature of the A2 term. This term
is small in all but s-states, where it diverges when treated as a perturbation. If we introduce
a cut-off, the contribution is of order γ 7 so one might be inclined to dismiss the term (as
is traditionally done). However, this term appears to be more singular than the Coulomb
potential, so that perturbation analysis, and indeed the whole eigenvalue approach, may be
called into doubt. On the other hand, this is not completely clear since the sin2 θ term vanishes
on the spin axis and could strongly modify the singular nature of this term. This problem
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must be solved in order to determine the exact extent that the Dirac equation contributes to
spectrum of hydrogen. If the problems posed in this paper can be solved in the positive, it
would appear that the correct approach for s-state (hyperfine) splitting gives the same results
as those obtained from using the Pauli equation. Furthermore, equation (24b) introduces a
natural cut-off, which removes the conceptual difficulty of a point magnetic dipole interaction
as implied by use of the delta term in the Pauli equation. This also suggests that the use of
cut-offs in QED is already justified by the eigenvalue analysis that supports it.

Using a different method, we are able to effect separation of variables for full coupling
and solve the radial equation. Since the behaviour of the radial equation at the origin is the
same as in the Dirac–Coulomb case, we can say that the A term does increase the singular
nature of the radial equation. We have not been able to solve the angular equation. Although
we strongly believe that contribution is small, we still cannot say how much the Dirac equation
contributes to the hydrogen spectrum.
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